If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8b^2-9=0
a = 8; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·8·(-9)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*8}=\frac{0-12\sqrt{2}}{16} =-\frac{12\sqrt{2}}{16} =-\frac{3\sqrt{2}}{4} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*8}=\frac{0+12\sqrt{2}}{16} =\frac{12\sqrt{2}}{16} =\frac{3\sqrt{2}}{4} $
| 5x-3+3x=4(2x+1)-5 | | 2x2+5x=207 | | -30r=18 | | -10+3k=14 | | 13x+143=180 | | 2x-16+10x=7x+39 | | 30+6=x | | 8(1+2x)+7x=-153 | | 15.96+5.16+4x=5.16 | | 20+-4x=8 | | (-15)-x/5=x/10 | | 50=26w+14w-30 | | -3x+5+2x=-5 | | 3n-11=n/4 | | 9+x/3=11 | | 1-x+2x=9 | | 2-b(-7)=11 | | -15-8n=-5n | | 0.4x-2.8=6 | | x+189=180 | | 2-11(5x+3)=20x-40 | | 2x+32+14=x+32 | | -7+3x+2x=53 | | 2(4x+8=-12+4 | | 184=-8(-5+p) | | 2q−8=2 | | 5/6x+23+12x2=712/3 | | x-10=6x-50 | | 1=u/2−1 | | 6x-9+x-3x=-1-7+4x-11+3x | | 75=(3x+7) | | 5x-3(-7+2x)-14=44 |